A fluorescence resonance energy transfer-based fluorometer assay for screening anti-coxsackievirus B3 compounds.
نویسندگان
چکیده
In view of the need to develop a simple and rapid method to screen for antiviral therapeutic agents, a fluorescence resonance energy transfer (FRET)-based reporter system consisting of engineered mammalian cells expressing a cyan fluorescent protein-yellow fluorescent protein (CFP-YFP) pair linked by a short peptide containing the cleavage site of viral protease 2A (2A(pro)) was developed. By detecting the 2A(pro) produced early during the virus infection cycle, the CFP-YFP pair effectively identifies infectious coxsackievirus B3 (CVB3), a picornavirus that causes viral myocarditis in humans. The reporter system was used to screen a library of 2000 drugs and natural products for potential antiviral compounds. The reporter cells were treated with the test compounds, challenged with CVB3, and then examined using a fluorometer at 24h post-infection. Sixty-four compounds, mostly therapeutic drugs, antimicrobial compounds and compounds with unknown functions, caused at least 50% inhibition of 2A(pro) activity. Three known antiviral compounds, cosmosiin, ribavirin and baicalein, were also identified in the screening. The developed method is an effective strategy for rapid screening, and identifies compounds that inhibit CVB3 2A(pro). This method should be a valuable aid in the antiviral drug discovery effort.
منابع مشابه
Fluorescence resonance energy transfer assay for high-throughput screening of ADAMTS1 inhibitors.
A disintegrin and metalloprotease with thrombospondin type I motifs-1 (ADAMTS1) plays a crucial role in inflammatory joint diseases and its inhibitors are potential candidates for anti-arthritis drugs. For the purposes of drug discovery, we reported the development and validation of fluorescence resonance energy transfer (FRET) assay for high-throughput screening (HTS) of the ADAMTS1 inhibitors...
متن کاملThis is the Pre-Published Version A fluorescence resonance energy transfer (FRET)-based high throughput drug screening method for discovery of anti-cancer compounds from herbal medicine
Background and purpose: We report the development of a very efficient cell-based high
متن کاملA new in vitro hemagglutinin inhibitor screening system based on a single-vesicle fusion assay
Hemagglutinin (HA) from the influenza virus plays a pivotal role in the infection of host mammalian cells and is, therefore, a druggable target, similar to neuraminidase. However, research involving the influenza virus must be conducted in facilities certified at or above Biosafety Level 2 because of the potential threat of the contagiousness of this virus. To develop a new HA inhibitor screeni...
متن کاملHomogeneous Assay Technologies in Drug Screening: Quenching Resonance Energy Transfer (qret) Technique
Information gained from the human genome project and improvements in compound synthesizing have increased the number of both therapeutic targets and potential lead compounds. This has evolved a need for better screening techniques to have a capacity to screen number of compound libraries against increasing amount of targets. Radioactivity based assays have been traditionally used in drug screen...
متن کاملRapid identification of inhibitors that interfere with poliovirus replication using a cell-based assay.
A small molecule library containing 480 known bioactive compounds was screened for antiviral activity against poliovirus (PV) using a cellular fluorescence resonance energy transfer (FRET) assay for viral protease activity. The infected reporter cells treated with the viral replication-suppressing compounds were examined via fluorescence microscope 7.5 h postinfection. Twelve molecules showed m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virological methods
دوره 171 1 شماره
صفحات -
تاریخ انتشار 2011